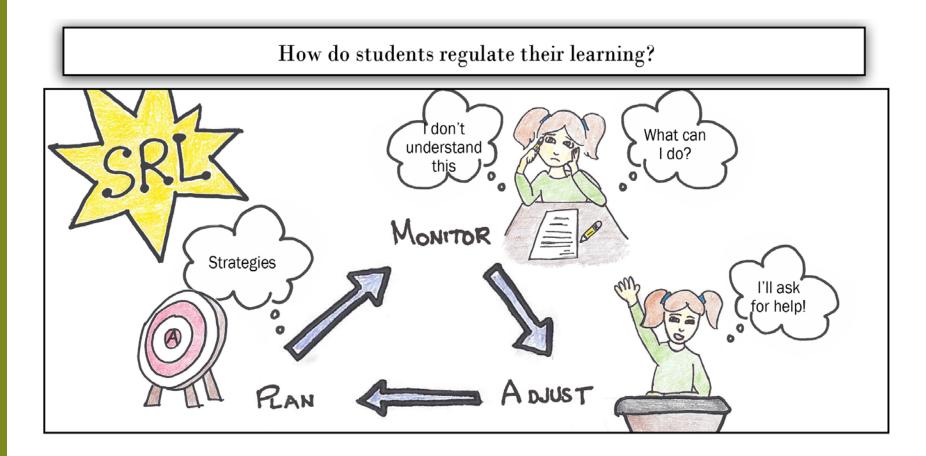
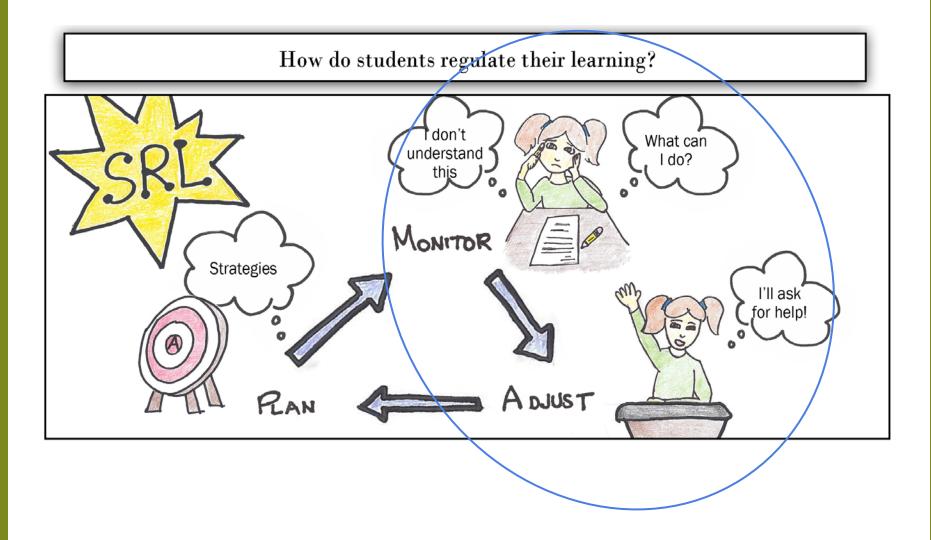
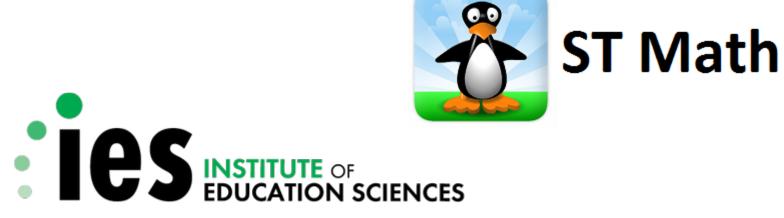

CALIBRATION OF CONFIDENCE JUDGMENTS IN ELEMENTARY MATHEMATICS:

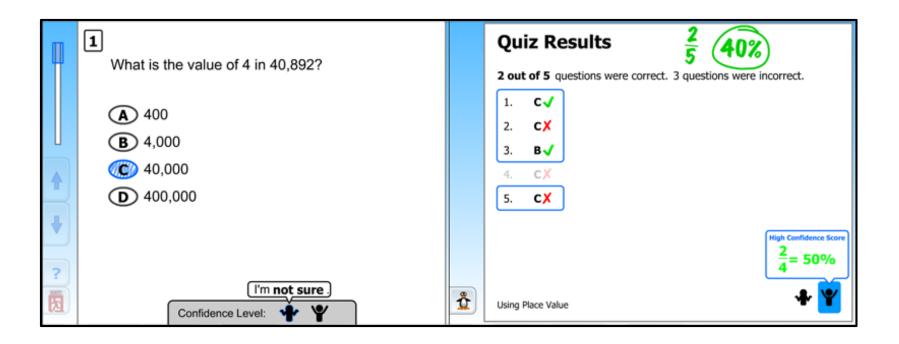

MEASUREMENT, DEVELOPMENT, AND IMPROVEMENT


Teomara Rutherford North Carolina State University

The Problem






Calibration

ST Math Quizzes

Does practice and feedback on calibration within ST Math improve student calibration accuracy?

Prior Work on Calibration

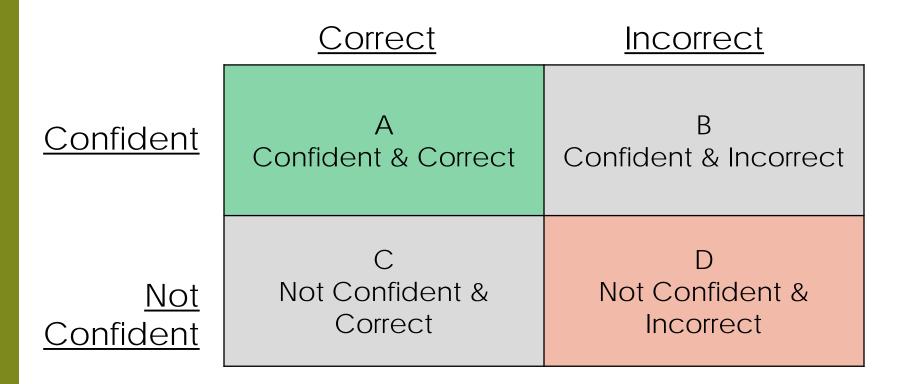
- More accurate calibration associated with higher achievement
- Content of material influences calibration accuracy
- Calibration can be improved through training, but this improvement often doesn't translate to gains in achievement

Potential of Data

- Elementary students (previously understudied)
- Classroom activity
- Hierarchical domain of math
- Multiple measures of calibration and achievement for each student

Data Details

- ST Math
- Year-long curriculum, about 20 objectives per year
- 2nd through 5th grades
- 18 Southern California Schools
- > 4,000 students



How should I operationalize calibration?

A wrinkle from my committee

Research Questions

- (1) Which measures of calibration can accommodate real-world data of accuracy and confidence judgments?
- (2) Among these measures, which display the greatest predictive validity?

Index	Formula
Sensitivity	A/(A + C)
Specificity	D/(B + D)
Simple Matching	(A + D)/(A + B + C + D)
G Index or Hamann coefficient	(A + D) - (B + C)/(A + B + C + D)
Odds Ratio	AD/BC
Goodman-Kruskal Gamma	(AD – BD)/(AD + BC)
Карра	2*(AD – BC)/[(A + B)(B + D) + (A + C)(C + D)]
Phi	$(AD - BC)/[(A + B)(B + D)(A + C)(C + D)]^{1/2}$
Sokal Reverse	$[1 - [(A + D)/(A + B + C + D)]]^{1/2}$
Discrimination (d')	z(A/(A + C)) - z(B/(B + D))

Formulas as represented in Schraw et al., 2013.

	<u>Correct</u>	<u>Incorrect</u>
<u>Confident</u>	A Confident & Correct 62.5%	B Confident & Incorrect 12.5%
<u>Not</u> Confident	C Not Confident & Correct 12.5%	D Not Confident & Incorrect 12.5%

	<u>Correct</u>	<u>Incorrect</u>
<u>Confident</u>	A Confident & Correct 62.5% (56%)	B Confident & Incorrect 12.5% (24%)
<u>Not</u> Confident	C Not Confident & Correct 12.5% (8%)	D Not Confident & Incorrect 12.5% (12%)

Research Questions

- (1) Which measures of calibration can accommodate real-world data of accuracy and confidence judgments?
- (2) Among these measures, which display the greatest predictive validity?

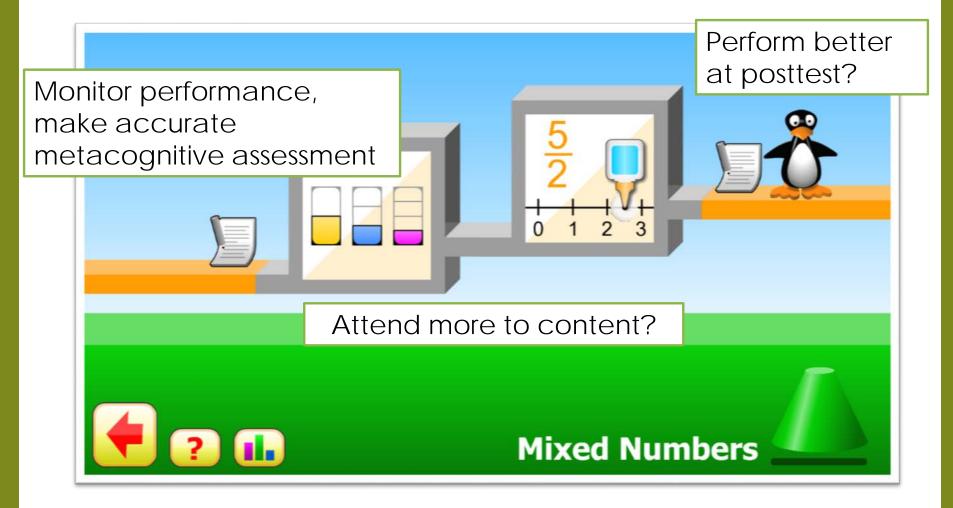
Method

Quizzes aggregated

- Posttest Accuracy = Calibration + Pretest Accuracy + Controls (demographics & game progress)
- Separate model for each of 10 measures
 One model w/Sensitivity & Specificity together

Results

(1)	(2)	(3)	(4)	(5)
Sensitivity	Specificity	Simple Match	G Index	Gamma
0.052***	-0.004	0.056***	0.056***	0.057***
(6)	(7)	(8)	(9)	(10)
Odds Ratio	Карра	Phi	Sokal Reverse	Discrimination
0.021*	0.049***	0.054***	-0.052***	0.055***


(Combined)			
Sensitivity Specificity			
0.109***	0.074***		

Conclusions

- Calibration researchers should consider problems of real data in choosing measures
- Sensitivity and Specificity should be considered they are relatively robust to missing quadrants and when considered together, have strongest relations with achievement gain.

WITHIN AND BETWEEN PERSON ASSOCIATIONS OF CALIBRATION AND ACHIEVEMENT

STUDY 2

Research Question

Do students (within ST Math) make greater pre to posttest gains when better calibrated at pretest?

Method

- Calibration = Sensitivity & Specificity (accurate certainty and uncertainty)
- Random intercepts 2-level model
 - L1: Task x Person (quizzes)
 - L2: Person
- Student fixed effects (group-mean centering)

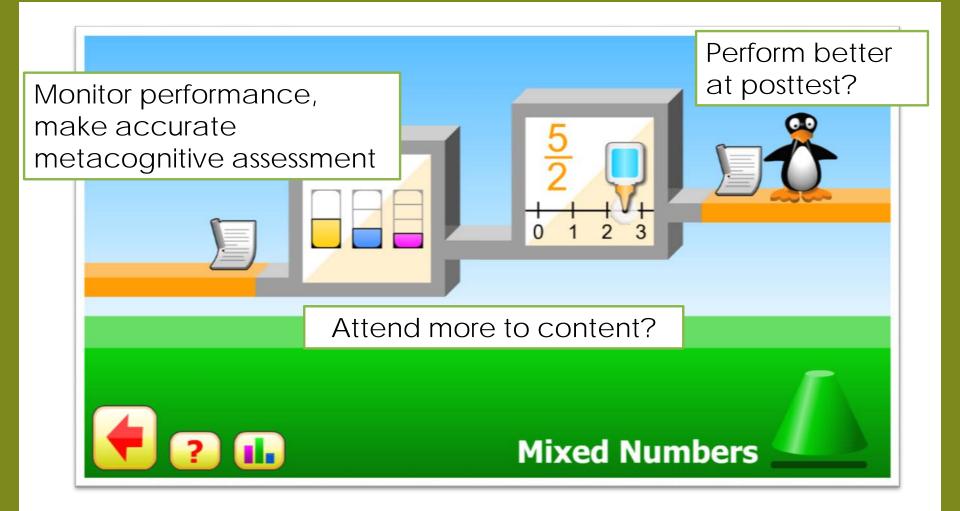
Results

Level 1 (Objective)				
Sensitivity Specificity				
0.07*** 0.02***				

Level 2 (Student)				
Sensitivity Specificity				
0.09*** 0.08***				

Contextual Effect (Student Net Objective)				
Sensitivity Specificity				
0.02 ^{ns} 0.06***				

STUDY 2


Replication

	Sensitivity	Specificity
Levelı		
Level 2		
Contextual		

STUDY 2

Conclusions

- Small positive relation between calibration and performance both within and between students
- Sensitivity and Specificity had different associations with performance (at different levels)

Confident & Correct d=.10

Not Confident & Wrong d=.02

STUDY 2

CHANGES IN CALIBRATION: IN RESPONSE TO INTERVENTION AND AS RELATED TO CHANGES IN ACHIEVEMENT

STUDY 3

Research Questions

- (1) Can third and fourth grade students be trained to be more accurate in their calibration judgments through practice and feedback on accuracy and calibration?
- (2) Is improvement in calibration accuracy linked to improvement in performance?

Method

- Random variation in treatment start date
 - Early treatment group (ETG) started ST Math one year before Late treatment group (LTG)
- Posttest Calibration= Pretest Accuracy + Treatment
 Dummy + Controls
- Five commonly used measures of calibration

2008-2009	2009-2010	2010-2011	2011-2012
K	ıst	2nd	3rd
ıst	2nd	3rd	4th

Results: ETG compared to LTG

	(1)	(2)	(3)	(4)	(5)
	Sensitivity	Specificity	Simple Match	Gamma	Discrimination
After Treatment (2011 to 2011)	↓	1	↓	↓	↓

Results: ETG compared to LTG

	(1)	(2)	(3)	(4)	(5)
	Sensitivity	Specificity	Simple Match	Gamma	Discrimination
Before Treatment (2010 to 2011)	↓	no sd	↓	₽	↓
After Treatment (2011 to 2011)	↓	1	↓	↓	↓

Research Questions

- (1) Can third and fourth grade students be trained to be more accurate in their calibration judgments through practice and feedback on accuracy and calibration?
- (2) Is improvement in calibration accuracy linked to improvement in performance?

Method

- Two types of analyses
 - Two related objectives (change scores)
 - Slopes of accuracy improvement on slopes of calibration improvement
- Within ST Math outcomes and state standardized test score outcomes
- Five calibration measures

Results: ST Math

PAIRED QUIZZES

(1)	(2)	(3)	(4)	(5)
Sensitivity	Specificity	Simple Match	Gamma	Discrimination
0.07*	-0.07**	-0.04	0.0001	-0.005

SLOPES

(1)	(2)	(3)	(4)	(5)
Sensitivity	Specificity	Simple Match	Gamma	Discrimination
0.05	0.06	0.16	0.15	0.15

Results: CSTs

PAIRED QUIZZES

(1)	(2)	(3)	(4)	(5)
Sensitivity	Specificity	Simple Match	Gamma	Discrimination
-0.05	0.04	0.01	-0.03	-0.01

SLOPES

(1)	(2)	(3)	(4)	(5)
Sensitivity	Specificity	Simple Match	Gamma	Discrimination
-0.001	0.01	0.03*	0.01	0.01

Conclusions

- ST Math calibration practice may operate to increase uncertainty (Specificity)
- Change in calibration not associated with change in achievement in these data

SUMMARY AND FUTURE DIRECTIONS

Key Findings

- Dual processes of calibration: certainty and uncertainty
- Calibration reflects elements of the Task x Person level and the Person level
- Calibration more complicated than represented in prior research

Future Directions

Measurement

• Dichotomous vs. more options

- Control
 - Student behaviors
- Aids to Malleability
 - Saliency of feedback
 - Direct instruction
- Experimental Manipulation
 - Separate out effect of ST Math and calibration feedback

Acknowledgements

My dissertation committee (& proposal committee):

George Farkas, Greg Duncan, Deborah Vandell, and Jacque Eccles; (Elizabeth Loftus, AnneMarie Conley)

Gregg Schraw and John Nietfeld for feedback

MIND Research Institute, Orange County Department of Education, and the students and teachers within the study

Funders: IES (Grant R305A090527) and NSF GRFP (Grant DGE-0808392).

Teya Rutherford taruther@ncsu.edu