A Multi-Study Examination of the Relations Between Epistemic Cognition, Emotions, and Learning About Controversial Science Knowledge

Greg Trevors 5 August 2017 Division 15, APA Washington, DC

Outline

- Controversial Science Knowledge
- Epistemic Cognition
- Manuscript Foci
 - 1. Cognition and Metacognition
 - 2. Beliefs and Emotions
 - 3. Identity and Emotions

Communicating Science Knowledge in the 21st Century

New technologies make knowledge widely accessible

+ Self-authorship & cognitive biases

= Complex, evolving, conflicting, & confusing information

Science Communication Paradox

"Never have human societies *known so much* about mitigating the dangers they face but *agreed so little* about what they collectively know." (Kahan, 2015)

With G.M.O. Policies, Europe Turns Against Science

Epistemic Beliefs

• How do we resolve conflicting information?

• Does science need to be "settled" before we believe it?

• Who's a trustworthy source of information?

Epistemic Beliefs

Nature of Knowledge

(Bråten & Strømsø, 2009; Hofer & Pintrich, 1997)

7

External reception from authorities

Unique Challenges for Learning Controversial Knowledge

Few studies have focused on uncovering the real-time processes

of learning about controversial knowledge and the factors that

predict them.

Controversial Knowledge: Three types of conflicts

Disagreements within a source

Students Regulate Their Learning as a Function of Epistemic Beliefs and Discrepancies

Gregory Trevors¹, Reza Feyzi-Behnagh², Roger Azevedo³, and François Bouchet⁴

¹University of Minnesota, ²State University of New York at Albany, ³North Carolina State University, ⁴Université Pierre et Marie Curie

Purpose

To examine the relations between **epistemic beliefs** and **cognitive and metacognitive** learning processes when encountering **discrepancies** in science multimedia.

Self-Regulated Learning: Cognitive Architecture of COPES

Pieschl et al., 2008

Epistemic Beliefs

Nature of Science Knowledge

(Hofer & Pintrich, 1997; Stahl & Bromme, 2007)

Within-Text Discrepancy

"speed reactions"

"decrease reactions"

	Automated Testing System - Test View	
Between Text	ATS V3.1 Automated Testing System Question 30. What is the relationship between energy and the function of enzymes?	Copyright 2006-2008, The University of Memphis
And Graph	Pessage Enzymes	(a)
Discrepancy	Among the most important of all biological molecules are enzymes. An enzyme is a protein that catalyzes (speeds) a chemical reaction without being consumed. Most enzymes catalyze reactions that either dismantle or build other molecules. Enzymes copy DNA, build Reaction Rate vs. En	(c)
increasing graph	proteins, digest food, and recycle a cell's worn-out parts. Without enzymes, these biochemical reactions would proceed far too slowly to support life; untreated waste products would build to toxic levels, and the cell would die.	(b)
	activation, the amount of energy required to start a reaction. Even exergonic reactions, which ultimately release energy, require an initial energy "kick" to get started. The enzyme brings reactants into contact with one another, so that less energy is required for the reaction to proceed. By reducing the energy of	(e) (f)
"decreasing" in text	Activation, some enzymes decrease reaction rates a billion times. Most enzymes can catalyze only one or a few chemical reactions. The key to this specificity lies in the shape of the enzyme's active site, the region to which the reactants (also called substrates) bind. The substrate fits into the active site. but not as precisely as a key	
	Session Info Script Info SessionName: McGill_MetaComp_Study Script Version: Participant No.: 1114 Script Version: 00:20:37 Thu Jan 19 13:35:34 EST 2012	Progress

No Discrepancy Control

Tobii T-60 Eye-Tracker

00:07:49 Tue Nov 08 09:42:19 EST 2011 SessionName: McGill_metaComp_S Participant No.: 1102 Time Limit: 500 Exit Option: Completion Script Name: Test Script Version: Script File: C:\SRLStudy9\ATSScriptItems\Script-A.bd Miscellaneous Script Info:

2

.

Variables

• Predictor:

- Beliefs about Texture / Structure of Science
 Knowledge
- Beliefs about
 Variability of Science
 Knowledge
- Prior Science
 Knowledge

Dependent:

- Metacognitive Judgments
- Eye Tracking
- Page Study Times

Canonical Correlations

- Predictors explained 22% of overall variance of dependent variables
- Only on Within-Text (WT) Discrepancy pages

Bivariate Correlations

Texture **negatively** related to metacognitive judgments

 Greater perception of science knowledge as <u>complex</u> related to <u>lower confidence</u> that pages with Within-Text discrepancies were understood.

Variability **negatively** related to study times & integration

• Greater perception of science knowledge as <u>dynamic and refutable</u> related to <u>less time</u> spent on pages with Within-Text discrepancies.

Conclusions I

The more individuals' epistemic beliefs were aligned with the

epistemology of science, the more **sensitive** they were at detecting and

responding to discrepancies in science texts.

How and Why?

(2nd Study: Think-Alouds & Retrospective Interviews)

- ID16: "I know I'm not good in sciences, so I just followed what it said."
- ID12: "There were sometimes when I thought the graph was wrong or had bad information, then I would get really confused and I would question my ability to think."
- ID08: "I really didn't question it, because I don't consider myself knowledgeable."
- ID18: "When it comes to science I just don't consider myself a better authority."

Conclusions II

Learning processes relate to individuals' level of epistemic confidence

 confidence in one's ability to question authoritative knowledge, and in oneself as a source of knowledge

Confidence to question content, sensitivity in detecting discrepancies, integrating multimedia representations to resolve them.

Disagreements between sources

Epistemic Beliefs and Emotions Predict the Source of Information in Summaries of Multiple Conflicting Documents

Gregory Trevors¹, Krista R. Muis², Reinhard Pekrun³, Gale M. Sinatra⁴, and Marloes Muijselaar⁵

University of Minnesota, ²McGill University, ³University of Munich, ⁴University of Southern California, ⁵University of Amsterdam

Purpose

To examine the role of **emotions as mediators** between **epistemic beliefs** and **learning** from multiple conflicting documents.

Materials and Procedure

- 1. <u>Beliefs</u>: 24-item Topic-Specific Epistemic Beliefs Questionnaire (Bråten & Strømsø, 2009)
- 2. <u>Texts</u>: 4 conflicting texts (human/natural causes; negative/positive effects) adapted from Strømsø, Bråten, and Britt (2009)
- 3. <u>Emotions</u>: 7-item scale, single adjective for each emotion (e.g., "Enjoying") (Pekrun & Meier, 2011)
- 4. <u>Summaries</u>: "Type a short essay (minimum 2-3 paragraphs in length) summarizing the texts you read on climate change."
- <u>Data sources</u>: Memory and use of source information at two levels – concept (word) level and sentence level.

Conclusions

Emotions mediate the relations between epistemic beliefs and fundamental aspects of reading comprehension.

Confusion is especially detrimental for learning from multiple conflicting documents.

Disagreements between source and individual

Identity and Epistemic Emotions during Knowledge Revision: A Potential Account for the Backfire Effect

Gregory Trevors¹, Krista R. Muis², Reinhard Pekrun³, Gale M. Sinatra⁴, and Phillip H. Winne⁵

¹University of Minnesota, ²McGill University, ³University of Munich, ⁴University of Southern California, ⁵Simon Fraser University

Purpose

To determine if **emotions** mediate the relations between **identity** and learning from **refutations** and act as one possible explanation for the **backfire effect** that sometimes occurs when misinformation is retracted.

Theoretical Framework

- Misconceptions about socio-scientific issues are often resistant to change (Sinatra, Kienhues, & Hofer, 2014)
 - E.g., Genetically modified foods are unnatural and toxic
- Backfire effect ironic strengthening of belief in misinformation after an attempted correction (Prasad et al., 2009; Nyhan & Reifler, 2010)
 - Identity (ego) protection (Kahan, 2015)

Theoretical Framework

- Misconceptions may be integrated with identity, such that efforts at knowledge revision may be appraised as threats and lead to experiencing anxiety (Gregoire, 2003)
- Negative emotions impact learning from texts and thus have implications for knowledge revision (Bohn-Gettler & Rapp, 2014; Zeidner, 2014)

Method

Genetically Modified Foods

- 1. Dietary Self-Concept
 - "I often think about the lasting effects of the foods I eat."
- 2. Two experimental conditions:
 - Expository (control) text vs. Refutation text
 - "You may think that the development of genetically modified foods occurs only in laboratories by scientists. This is also not correct! Genetic modifications may happen through natural processes."
- 3. Epistemic emotions
 - "Confused"
- 4. Knowledge/Learning
 - Pre- and post-test

Significant moderated mediation in refutation condition, $\beta = -.09$

Moderator: Refutation Condition

Conclusions

Self-concept on learning negatively mediated via negative emotions, which was conditional on text condition (i.e., refutation text).

Possible evidence that refutations may be appraised as threats, which represents a new area of focus for knowledge revision research.

Final Conclusions

Conclusions Recap: Three Manuscripts

Г	\Box
	X
·	

1. Confidence to question content, sensitivity in detecting discrepancies, coordinating sources to resolve them.

2. The relations between epistemic beliefs learning from multiple conflicting documents are mediated by emotions.

Identity can negatively impede the revision of misconceptions,
 mediated via personally-experienced negative emotions.

Contributions

Contemporary challenges to learning about controversial science.

Theoretical:

- Epistemic confidence
- Mediating emotion
- Identity in revision
- Boundary conditions for successful revision

Methodological / Analytical:

- Triangulation
- Eye tracking
- Think-alouds
- Metacognitive judgments
- Computer log data-mining
- Mediation and moderation analyses

Implications for Practice

1) "I'm not a science person" – designing STEM interventions to target epistemic confidence and identity

2) Scaffolding self-regulation of curiosity and 'optimal confusion' (D'Mello & Graesser, 2014)

3) Re-framing revision interventions to account for identity

Acknowledgements

- Supervisor: Dr. Krista Muis
- Lab Members: Marianne Chevrier; Ivana DiLeo; Cynthia Psaradellis; Cara Singh
- Committee Members: Dr. Susanne Lajoie; Dr. Adam Dubé; Dr. Lauren Human; Dr. Tina Montreuil
- **Co-Authors:** Dr. Reza Feyzi-Benagh; Dr. Eric Poitras; Dr. Roger Azevedo; Dr. François Bouchet; Dr. Reinhard Pekrun; Dr. Gale Sinatra; Dr. Marloes Muijselaar; Dr. Phil Winne
- Funding: SSHRC; Tomlinson; Wolfe; Casgrain

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Thank You

gtrevors@umn.edu