Sonia Jamani, Svetha Mohan, Josh B. Jaffe, Doug Lombardi, Janelle M. Bailey
Department of Human Development and Quantitative Methodology, University of Maryland, College Park

Climate Crisis Learning Through Scaffolded Instructional Tools

Background

- Autonomy-supportive may promote students’ learning and agency about socioscientific topics (Patall, 2019; Zangori et al., 2017).
- Yet, learning about socioscientific issues may be challenging for students because they are often controversial and complex (Sinatra & Lombardi, 2020).
- Instructional scaffolding may facilitate students’ learning about controversial and complex socioscientific topics and help them to think more scientifically (Bailey et al., 2018).

Purpose and Research Questions

- Model-Evidence Link (MEL) scaffolds can facilitate students’ scientific evaluations about the connection between evidence and alternative explanatory models (Lombardi et al., 2018).
- More critical evaluations can shift students toward more scientific judgments and deeper learning (Lombardi et al., 2016).
- The purpose of the present study was to compare the effectiveness of two types of MEL scaffolds: a) build-a-MEL (baMEL; more autonomy supportive), and b) preconstructed MEL (pcMEL; less autonomy supportive).

Research Question:

- How do students’ plausibility judgments and knowledge change over the course of these two instructional treatments (pcMEL and baMEL)?

Methods

- Participants ($N = 171$) were mostly White (71%) secondary students from two school districts in the U.S.
- Procedures
 - We measured model plausibility pre and post activity per the procedures outlined in Medrano et al. (2020).
 - Scientific topics: climate change (pcMEL) & extreme weather (baMEL)

Materials

- The Climate Change pcMEL is about causes of current climate change, where students are presented 4 lines of scientific evidence and 2 explanatory models (scientific and a non-scientific alternative).
- The Extreme Weather baMEL is about extreme weather events and climate change, where students constructed their own diagram selecting 4 lines of scientific evidence (from 8 possible choices) and 2 explanatory models (from 3 possible choices).

Results

- Both MEL scaffolds promoted plausibility shifts toward the scientific model and deepened students’ knowledge.
- Scientific shifts had a stronger effect size for the baMEL.
- The Climate Change pcMEL may have reached “ceiling” effect, with wider acceptance of human-inducement.

Conclusion

Acknowledgements

This research project is supported by the US NSF (Grant 2027776). Any opinions, findings, conclusions, or recommendations expressed are those of the authors and do not necessarily reflect the NSF’s views. Thanks to Science Learning Research Group for their ongoing support.